z-Expansion Formalism

Aaron Meyer

asmeyer2012@uchicago.edu
University of Chicago/Fermilab
September 1, 2016

While I have your attention...

Thanks to everyone who helped put the workshop together and for coming to listen!

Outline

Theory

- Introduction why should we study nucleon cross sections?
- z-expansion formalism
- Breakdown

Vector form factor status

Deuterium Bubble Chamber Fits

Re-fit of bubble chamber data using z-expansion

CKM Matrix Elements

Motivation

$$\Phi(E_{\nu}) = \frac{\mathcal{N}(E_{\nu})}{\sigma_{A}(E_{\nu})}$$

Oscillation experiments monitor flux by counting interactions assuming cross section, near/far detector do not perfectly cancel

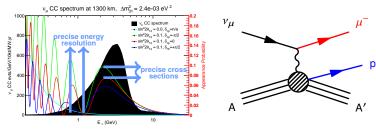
→ Measurements of neutrino oscillation depend on precise knowledge of neutrino cross section

$$\sigma_A \sim \sigma_{CCQE} \otimes (\text{nucl. models})$$

 $(\sigma_{CCQE}(E_{\nu}, Q^2))$ is quadratic function of form factors)

- ▶ Large nuclear targets ⇒ measurements of oscillation parameters depends on nuclear models
- Nuclear effects entangled with nucleon amplitudes
 factorization is oversimplification
- Model-dependent shape parameterization introduces systematic uncertainties and underestimates errors

Cross Sections



(Figure from LBNE, 1307.7335 [hep-ex])

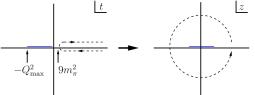
Charge Current QE scattering

- Measurements of neutrino parameters require precise knowledge of cross sections
- Nuclear cross sections obtained using nucleon amplitudes as input to nuclear models
- Uncertainty on $F_A(Q^2)$ is primary contribution to systematic errors
 - ► F_{1V} , F_{2V} known from e p scattering
 - F_P suppressed by lepton mass in cross sections
- Focus on F_A , but z-expansion could be applied to any of form factors

z-Expansion

The z-Expansion (1108.0423 [hep-ph]) is a conformal mapping which takes the kinematically allowed region ($t=-Q^2\leq 0$) to within |z|<1

$$z(t; t_0, t_c) = \frac{\sqrt{t_c - t} - \sqrt{t_c - t_0}}{\sqrt{t_c - t} + \sqrt{t_c - t_0}} \qquad F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad t_c = 9m_{\pi}^2$$



$$z(t = t_c) = -1$$
 $z(t = t_0) = 0$ $z(t = -\infty) = 1$

z-Expansion: t_c

$$z(t; t_0, t_c) = \frac{\sqrt{t_c - t} - \sqrt{t_c - t_0}}{\sqrt{t_c - t} + \sqrt{t_c - t_0}} \qquad t_c = 9m_{\pi}^2$$

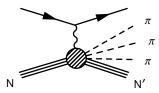
t_c is the 4-momentum cutoff for particle production

 $F_A \implies 3\pi$ threshold (1 π forbidden by kinematics, 2 π forbidden by *G*-parity)

G-parity:

$$\eta_G = (-1)^{L+I+S}$$

(both N multiplet and π multiplet have charge -1)



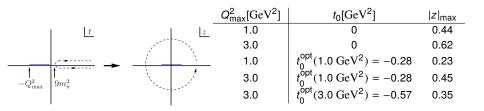
z-Expansion: t_0

$$z(t; t_0, t_c) = \frac{\sqrt{t_c - t} - \sqrt{t_c - t_0}}{\sqrt{t_c - t} + \sqrt{t_c - t_0}} \qquad z(t = t_0) = 0$$

 \emph{t}_{0} is an unphysical parameter which can be used to improve convergence

The best t_0 is determined by the interesting kinematic range:

$$t_0^{\text{opt}}(Q_{\text{max}}^2) = t_C \left(1 - \sqrt{1 + Q_{\text{max}}^2/t_C} \right)$$



z-Expansion: Sum Rules

In practice, only finite order expansion

$$F_A(z) = \sum_{k=0}^{k_{\text{max}}} a_k z^k$$

We can use sum rules to enforce behavior of the form factor in certain limits

$$ightharpoonup F_A(Q^2=0)=g_A \implies a_0 \text{ fixed}$$

$$ightharpoonup F_A(Q^2 = \infty) = 0 \implies a_{k_{\text{max}}} \text{ fixed}$$

The second of these rules comes from the perturbative QCD requirement:

$$\lim_{t \to -\infty} F_A(t) = a_0 + a_1 + \dots \quad \propto (-t)^{-2} \qquad \left(\lim_{t \to -\infty} z(t) = 1\right)$$

More sum rules can be obtained by taking derivatives:

$$\lim_{t \to -\infty} \frac{d}{dz} F_A(z(t)) = \frac{dt}{dz} \frac{d}{dt} F_A(z(t)) \propto (-t)^{-3/2}$$

$$\lim_{t\to-\infty}\frac{d^2}{dz^2}F_A(z(t))\propto (-t)^{-1} \qquad \lim_{t\to-\infty}\frac{d^3}{dz^3}F_A(z(t))\propto (-t)^{-1/2}$$

These relations fix a_k for $k \in \{0, k_{\text{max}} - 3, k_{\text{max}} - 2, k_{\text{max}} - 1, k_{\text{max}}\}$

Coefficient Bounds

Finiteness of the coefficients can be shown by defining a norm:

$$||F_A||_p \equiv \left(\sum_k |a_k|^p\right)^{\frac{1}{p}}$$

p = 2 can be related directly to the dispersion integral integrated around the unit circle:

$$||F_A||_2 = \left(\sum_k |a_k|^2\right)^{\frac{1}{2}} = \left(\oint \frac{dz}{z} |F_A|^2\right)^{\frac{1}{2}}$$

This integral can be shown to be finite, so the a_k must be bounded and decreasing for large k

 $p = \infty$ is a special case,

$$||F_A||_{\infty} = \lim_{p \to \infty} \left(\sum_k |a_k|^p \right)^{\frac{1}{p}} \to \max\{|a_k|\}$$

with $||F_A||_{\infty} \le ||F_A||_2$, so $||F_A||_2$ can overestimate relevant coefficient size

Order Unity Coefficients

Order unity coefficients can be motivated by an ansatz for the form factor

For instance, axial vector meson dominance ansatz with Breit-Wigner form:

$$F_A \sim \frac{m_{a_1}^2}{m_{a_1}^2 - t - i\Gamma_{a_1}m_{a_1}} \equiv -\frac{m_{a_1}^2}{b(t)}$$

This is recovered by assuming the dispersion relation

$$Im F_{A}(t+i0) = \frac{N m_{a_{1}}^{3} \Gamma_{a_{1}}}{|b(t)|^{2}} \theta(t-t_{c})$$

Given this ansatz, can get analytical expression for z-expansion coefficient bound

From $||F_A||_{\infty}$, estimate ratio of order-0 and largest z-expansion coefficients:

$$\left|\frac{a_k}{a_0}\right| \le \frac{2|\mathcal{N}|}{|F_A(t_0)|} \operatorname{Im}\left(\frac{-m_{a_1}^2}{b(t_C) + \sqrt{(t_C - t_0)b(t_C)}}\right) \quad \text{for all } k$$

This expression demonstrates that we can expect coefficients of order unity

Theory Summary

z-expansion is a model-independent description of the axial form factor

- Motivated by analyticity arguments
- Allows quantification of systematic errors

Coefficients in the z-expansion fall off as the order k increases

- Only a few coefficients needed to represent the form factor
- Good convergence of form factor
- Provides a prescription for introducing more parameters as data improves

Good control of form factor outside of kinematically interesting region

- Expansion parameter |z| < 1 for entire kinematic region $(t \in [0, \infty))$, can determined the required number of coefficients in the expansion *a priori*
- Convergence can be improved by varying t₀
- ► Sum rules to control large-Q² behavior, enforce falloff required by pertrubative QCD (up to log corrections)

Backup

CCQE Cross section

(Formaggio, Zeller 1305.7513[hep-ex])

$$\begin{split} \sigma_{CCQE}(E_{V},Q^{2}) &\propto \frac{1}{E_{V}^{2}} \left(A(Q^{2}) \mp \left(\frac{s-u}{M_{N}^{2}} \right) B(Q^{2}) + \left(\frac{s-u}{M_{N}^{2}} \right)^{2} C(Q^{2}) \right) \\ &s - u = 4M_{N}E_{V} - Q^{2} - m_{\ell}^{2} \qquad \eta \equiv \frac{Q^{2}}{4M_{N}^{2}} \\ A(Q^{2}) &= \frac{m_{\ell}^{2} + Q^{2}}{M_{N}^{2}} \times \\ & \left[(1+\eta)F_{A}^{2} - (1-\eta)(F_{1}^{2} + \eta F_{2}^{2}) + 4\eta F_{1}F_{2} \right. \\ &\left. - \frac{m_{\ell}^{2}}{4M_{N}^{2}} \left((F_{1} + F_{2})^{2} + (F_{A} + 2F_{P})^{2} - 4(1+\eta)F_{P}^{2} \right) \right] \end{split}$$

 $B(Q^2) = 4\eta F_A (F_1 + F_2)$ $C(Q^2) = \frac{1}{4} (F_A^2 + F_1^2 + \eta F_2^2)$